Skip to main content

Pierrotlc's group workspace

StepLR - 32x32

What makes this group special?
Tags

astral-aardvark-137

Notes
Author
State
Failed
Start time
January 30th, 2022 1:01:11 AM
Runtime
21m 10s
Tracked hours
21m 6s
Run path
pierrotlc/AnimeStyleGAN/tshkfyzh
OS
Linux-5.15.15-76051515-generic-x86_64-with-glibc2.10
Python version
3.8.5
Git repository
git clone git@github.com:Futurne/AnimeStyleGAN.git
Git state
git checkout -b "astral-aardvark-137" 80a07f0661796dd1d44dba50eed720a183ce2c07
Command
launch_training.py
System Hardware
CPU count16
GPU count1
GPU typeNVIDIA GeForce RTX 3080 Laptop GPU
W&B CLI Version
0.12.9
Config

Config parameters are your model's inputs. Learn more

  • {} 29 keys
    • 64
    • [] 2 items
      • 0.5
      • 0.99
    • [] 2 items
      • 0.5
      • 0.99
    • "<torch.utils.data.dataloader.DataLoader object at 0x7f6677a71b20>"
    • "cuda"
    • 32
    • 64
    • 0.3
    • 50
    • 0.8
    • 0.8
    • 0.001
    • 0.0001
    • 64
    • 4
    • 2
    • 2
    • "Discriminator( (first_conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(3, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (blocks): ModuleList( (0): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(4, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(4, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(4, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(4, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(4, 8, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (1): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(8, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (2): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (3): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (4): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) ) (classify): Sequential( (0): Conv2d(128, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): Flatten(start_dim=1, end_dim=-1) ) )"
    • "StyleGAN( (mapping): MappingNetwork( (norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (layers): ModuleList( (0): Sequential( (0): Linear(in_features=64, out_features=64, bias=True) (1): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Linear(in_features=64, out_features=64, bias=True) (1): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) ) (out): Linear(in_features=64, out_features=64, bias=True) ) (synthesis): SynthesisNetwork( (blocks): ModuleList( (0): SynthesisBlock( (conv2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (1): SynthesisBlock( (upsample): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (2): SynthesisBlock( (upsample): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (3): SynthesisBlock( (upsample): ConvTranspose2d(16, 8, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) ) (to_rgb): Conv2d(8, 3, kernel_size=(1, 1), stride=(1, 1)) ) )"
    • "Adam ( Parameter Group 0 amsgrad: False betas: (0.5, 0.99) eps: 1e-08 initial_lr: 0.001 lr: 0.001 weight_decay: 0 )"
    • "Adam ( Parameter Group 0 amsgrad: False betas: (0.5, 0.99) eps: 1e-08 initial_lr: 0.0001 lr: 0.0001 weight_decay: 0 )"
    • 10
    • 0
    • 50
    • 50
    • "<torch.optim.lr_scheduler.StepLR object at 0x7f66868a9f70>"
    • "<torch.optim.lr_scheduler.StepLR object at 0x7f6677a717f0>"
    • 0
    • 0
Summary

Summary metrics are your model's outputs. Learn more

  • {} 7 keys
    • 0.37869693350863887
    • 5.192645639960674
    • 1.4056763061335389
    • 0.7766449201394855
    • 1.5021786038544576
    • {} 7 keys
      • 0.2189455065778803
    Artifact Outputs

    This run produced these artifacts as outputs. Total: 1. Learn more

    Loading...